

ZIRCONIA EE-ZR1

DESCRIPTION

Zirconia (ZrO2) ceramic offers a combination of high hardness, wear and corrosion resistance, while exhibiting one of the highest fracture toughness values among all ceramic materials. Zirconia is a ceramic material with adequate mechanical properties for manufacturing of medical devices.

PROS	CONS	
 High mechanical strength 	• Brittleness	
 High-temperature resistance 	 Processing difficulty 	
• Chemical inertness	 Grinding and machining challenges 	
 Biocompatibility 	 Thermal shock sensitivity 	
 Low thermal conductivity 	• Cost	
 Electrical insulation 	• Limited ductility	
Optical translucency	 Potential phase transformation 	
• Toughness	 Surface finish challenges 	

APPLICATIONS:

APPLICATION AREA	EXAMPLE OF USE	
DENTAL IMPLANTS	Biocompatible material used for dental crowns and implants.	
BEARINGS AND BUSHINGS	High wear resistance in industrial machinery applications.	
CUTTING TOOLS	Used for high-speed machining due to its hardness.	
INSULATORS	Electrical and thermal insulators in various industries.	
OXYGEN SENSORS	Solid-state oxygen sensors in automotive and industrial use.	
THERMAL BARRIER COATINGS	Coating for turbine blades and high-temperature components.	
BIOMEDICAL COMPONENTS	Prosthetic joints and other medical implants.	
FUEL CELLS	Electrolyte material in solid oxide fuel cells.	
AEROSPACE COMPONENTS	High-temperature, wear-resistant parts for aerospace.	
CERAMIC KNIVES	Sharp, durable knives with excellent edge retention.	

PHYSICAL PROPERTIES:

*Please note that all values quoted are based on test pieces and may vary according to component design. These values are not guaranteed in anyway whatsoever and should only be treated as indicative and for guidance only.

Property	Unit	Value
Melting Point	°C	~2715
Density	g/cm ³	5.5 – 6.1
Thermal Conductivity	20°C W/(m·K)	2 - 3
Coefficient of Thermal Expansion	10 ^{−6} /°C	9 - 11
Specific Heat Capacity	J/(g·°C)	0.4 - 0.6
Young's Modulus	GPa	200 - 250
Poisson's Ratio	-	0.25 - 0.31
Vickers Hardness	Kgf/mm ²	1200 - 1400
Maximum Use Temperature	°C	>1000
Electrical Resistivity	$\Omega \cdot \mathrm{cm}$	$10^{12} - 10^{15}$
Transparency (Thin Layers)	-	Translucent/Transparent
Dielectric Constant	ε	8 - 30
Dielectric Strength	Kv/mm	5 - 15
Loss Tangent	-	0.001 - 0.01